Sparks of Artificial General Recommender (AGR): Early Experiments with ChatGPT

Authors: Guo Lin, Yongfeng Zhang

Abstract: This study investigates the feasibility of developing an Artificial General Recommender (AGR), facilitated by recent advancements in Large Language Models (LLMs). An AGR comprises both conversationality and universality to engage in natural dialogues and generate recommendations across various domains. We propose ten fundamental principles that an AGR should adhere to, each with its corresponding testing protocols. We proceed to assess whether ChatGPT, a sophisticated LLM, can comply with the proposed principles by engaging in recommendation-oriented dialogues with the model while observing its behavior. Our findings demonstrate the potential for ChatGPT to serve as an AGR, though several limitations and areas for improvement are identified.

Submitted to arXiv on 08 May. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.