PiVe: Prompting with Iterative Verification Improving Graph-based Generative Capability of LLMs
Authors: Jiuzhou Han, Nigel Collier, Wray Buntine, Ehsan Shareghi
Abstract: Large language models (LLMs) have shown great abilities of solving various natural language tasks in different domains. Due to the training objective of LLMs and their pretraining data, LLMs are not very well equipped for tasks involving structured data generation. We propose a framework, Prompting with Iterative Verification (PiVe), to improve graphbased generative capability of LLMs. We show how a small language model could be trained to act as a verifier module for the output of an LLM (i.e., ChatGPT), and to iteratively improve its performance via fine-grained corrective instructions. Additionally, we show how the verifier module could apply iterative corrections offline for a more cost-effective solution to the text-to-graph generation task. Experiments on three graph-based datasets show consistent improvement gained via PiVe. Additionally, we highlight how the proposed verifier module can be used as a data augmentation tool to help improve the quality of automatically generated parallel text-graph datasets. Our code and data are available at https://github.com/Jiuzhouh/PiVe.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.