Memory-Efficient Fine-Tuning of Compressed Large Language Models via sub-4-bit Integer Quantization
Authors: Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung Kwon, Dongsoo Lee
Abstract: Parameter-efficient fine-tuning (PEFT) methods have emerged to mitigate the prohibitive cost of full fine-tuning large language models (LLMs). Nonetheless, the enormous size of LLMs impedes routine deployment. To address the issue, we present Parameter-Efficient and Quantization-aware Adaptation (PEQA), a novel quantization-aware PEFT technique that facilitates model compression and accelerates inference. PEQA operates through a dual-stage process: initially, the parameter matrix of each fully-connected layer undergoes quantization into a matrix of low-bit integers and a scalar vector; subsequently, fine-tuning occurs on the scalar vector for each downstream task. Such a strategy compresses the size of the model considerably, leading to a lower inference latency upon deployment and a reduction in the overall memory required. At the same time, fast fine-tuning and efficient task switching becomes possible. In this way, PEQA offers the benefits of quantization, while inheriting the advantages of PEFT. We compare PEQA with competitive baselines in comprehensive experiments ranging from natural language understanding to generation benchmarks. This is done using large language models of up to $65$ billion parameters, demonstrating PEQA's scalability, task-specific adaptation performance, and ability to follow instructions, even in extremely low-bit settings.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.