Sentiment Analysis in the Era of Large Language Models: A Reality Check

Authors: Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan, Lidong Bing

Abstract: Sentiment analysis (SA) has been a long-standing research area in natural language processing. It can offer rich insights into human sentiments and opinions and has thus seen considerable interest from both academia and industry. With the advent of large language models (LLMs) such as ChatGPT, there is a great potential for their employment on SA problems. However, the extent to which existing LLMs can be leveraged for different sentiment analysis tasks remains unclear. This paper aims to provide a comprehensive investigation into the capabilities of LLMs in performing various sentiment analysis tasks, from conventional sentiment classification to aspect-based sentiment analysis and multifaceted analysis of subjective texts. We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets. Our study reveals that while LLMs demonstrate satisfactory performance in simpler tasks, they lag behind in more complex tasks requiring deeper understanding or structured sentiment information. However, LLMs significantly outperform SLMs in few-shot learning settings, suggesting their potential when annotation resources are limited. We also highlight the limitations of current evaluation practices in assessing LLMs' SA abilities and propose a novel benchmark, \textsc{SentiEval}, for a more comprehensive and realistic evaluation. Data and code during our investigations are available at \url{https://github.com/DAMO-NLP-SG/LLM-Sentiment}.

Submitted to arXiv on 24 May. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.