An Efficient Key Management Scheme For In-Vehicle Network

Authors: Hsinlin Tan

Abstract: Vehicle technology has developed rapidly these years, however, the security measures for in-vehicle network does not keep up with the trend. Controller area network(CAN) is the most used protocol in the in-vehicle network. With the characteristic of CAN, there exists many vulnerabilities including lacks of integrity and confidentiality, and hence CAN is vulnerable to various attacks such as impersonation attack, replay attack, etc. In order to implement the authentication and encryption, secret key derivation is necessary. In this work, we proposed an efficient key management scheme for in-vehicle network. In particular, the scheme has five phases. In the first and second phase, we utilize elliptic curve cryptography-based key encapsulation mechanism(KEM) to derive a pairwise secret between each ECU and a central secure ECU in the same group. Then in the third phase, we design secure communication to derive group shared secret among all ECU in a group. In the last two phases, SECU is not needed, regular ECU can derive session key on their own. We presented a possible attack analysis(chosen-ciphertext attack as the main threat) and a security property analysis for our scheme. Our scheme is evaluated based on a hardware-based experiment of three different microcontrollers and a software-based simulation of IVNS. We argue that based on our estimation and the experiment result, our scheme performs better in communication and computation overhead than similar works.

Submitted to arXiv on 24 May. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.