Integrating Generative Artificial Intelligence in Intelligent Vehicle Systems
Authors: Lukas Stappen, Jeremy Dillmann, Serena Striegel, Hans-Jörg Vögel, Nicolas Flores-Herr, Björn W. Schuller
Abstract: This paper aims to serve as a comprehensive guide for researchers and practitioners, offering insights into the current state, potential applications, and future research directions for generative artificial intelligence and foundation models within the context of intelligent vehicles. As the automotive industry progressively integrates AI, generative artificial intelligence technologies hold the potential to revolutionize user interactions, delivering more immersive, intuitive, and personalised in-car experiences. We provide an overview of current applications of generative artificial intelligence in the automotive domain, emphasizing speech, audio, vision, and multimodal interactions. We subsequently outline critical future research areas, including domain adaptability, alignment, multimodal integration and others, as well as, address the challenges and risks associated with ethics. By fostering collaboration and addressing these research areas, generative artificial intelligence can unlock its full potential, transforming the driving experience and shaping the future of intelligent vehicles.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.