A Study of Documentation for Software Architecture
Authors: Neil A. Ernst, Martin P. Robillard
Abstract: Documentation is an important mechanism for disseminating software architecture knowledge. Software project teams can employ vastly different formats for documenting software architecture, from unstructured narratives to standardized documents. We explored to what extent this documentation format may matter to newcomers joining a software project and attempting to understand its architecture. We conducted a controlled questionnaire-based study wherein we asked 65 participants to answer software architecture understanding questions using one of two randomly-assigned documentation formats: narrative essays, and structured documents. We analyzed the factors associated with answer quality using a Bayesian ordered categorical regression and observed no significant association between the format of architecture documentation and performance on architecture understanding tasks. Instead, prior exposure to the source code of the system was the dominant factor associated with answer quality. We also observed that answers to questions that require applying and creating activities were statistically significantly associated with the use of the system's source code to answer the question, whereas the document format or level of familiarity with the system were not. Subjective sentiment about the documentation format was comparable: Although more participants agreed that the structured document was easier to navigate and use for writing code, this relation was not statistically significant. We conclude that, in the limited experimental context studied, our results contradict the hypothesis that the format of architectural documentation matters. We surface two more important factors related to effective use of software architecture documentation: prior familiarity with the source code, and the type of architectural information sought.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.