Near-Field Communications: A Tutorial Review

Authors: Yuanwei Liu, Zhaolin Wang, Jiaqi Xu, Chongjun Ouyang, Xidong Mu, Robert Schober

48 pages, 37 figures

Abstract: Extremely large-scale antenna arrays, tremendously high frequencies, and new types of antennas are three clear trends in multi-antenna technology for supporting the sixth-generation (6G) networks. To properly account for the new characteristics introduced by these three trends in communication system design, the near-field spherical-wave propagation model needs to be used, which differs from the classical far-field planar-wave one. As such, near-field communication (NFC) will become essential in 6G networks. In this tutorial, we cover three key aspects of NFC. 1) Channel Modelling: We commence by reviewing near-field spherical-wave-based channel models for spatially-discrete (SPD) antennas. Then, uniform spherical wave (USW) and non-uniform spherical wave (NUSW) models are discussed. Subsequently, we introduce a general near-field channel model for SPD antennas and a Green's function-based channel model for continuous-aperture (CAP) antennas. 2) Beamfocusing and Antenna Architectures: We highlight the properties of near-field beamfocusing and discuss NFC antenna architectures for both SPD and CAP antennas. Moreover, the basic principles of near-field beam training are introduced. 3) Performance Analysis: Finally, we provide a comprehensive performance analysis framework for NFC. For near-field line-of-sight channels, the received signal-to-noise ratio and power-scaling law are derived. For statistical near-field multipath channels, a general analytical framework is proposed, based on which analytical expressions for the outage probability, ergodic channel capacity, and ergodic mutual information are obtained. Finally, for each aspect, topics for future research are discussed.

Submitted to arXiv on 28 May. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.