3DTeethSeg'22: 3D Teeth Scan Segmentation and Labeling Challenge

Authors: Achraf Ben-Hamadou, Oussama Smaoui, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Hoyeon Lim, Minchang Kim, Minkyung Lee, Minyoung Chung, Yeong-Gil Shin, Mathieu Leclercq, Lucia Cevidanes, Juan Carlos Prieto, Shaojie Zhuang, Guangshun Wei, Zhiming Cui, Yuanfeng Zhou, Tudor Dascalu, Bulat Ibragimov, Tae-Hoon Yong, Hong-Gi Ahn, Wan Kim, Jae-Hwan Han, Byungsun Choi, Niels van Nistelrooij, Steven Kempers, Shankeeth Vinayahalingam, Julien Strippoli, Aurélien Thollot, Hugo Setbon, Cyril Trosset, Edouard Ladroit

29 pages, MICCAI 2022 Singapore, Satellite Event, Challenge
License: CC BY-SA 4.0

Abstract: Teeth localization, segmentation, and labeling from intra-oral 3D scans are essential tasks in modern dentistry to enhance dental diagnostics, treatment planning, and population-based studies on oral health. However, developing automated algorithms for teeth analysis presents significant challenges due to variations in dental anatomy, imaging protocols, and limited availability of publicly accessible data. To address these challenges, the 3DTeethSeg'22 challenge was organized in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2022, with a call for algorithms tackling teeth localization, segmentation, and labeling from intraoral 3D scans. A dataset comprising a total of 1800 scans from 900 patients was prepared, and each tooth was individually annotated by a human-machine hybrid algorithm. A total of 6 algorithms were evaluated on this dataset. In this study, we present the evaluation results of the 3DTeethSeg'22 challenge. The 3DTeethSeg'22 challenge code can be accessed at: https://github.com/abenhamadou/3DTeethSeg22_challenge

Submitted to arXiv on 29 May. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.