Forecasting high-dimensional functional time series: Application to sub-national age-specific mortality

Authors: Cristian F. Jiménez-Varón, Ying Sun, Han Lin Shang

28 pages, 4 figures
License: CC BY-NC-SA 4.0

Abstract: We consider modeling and forecasting high-dimensional functional time series (HDFTS), which can be cross-sectionally correlated and temporally dependent. We present a novel two-way functional median polish decomposition, which is robust against outliers, to decompose HDFTS into deterministic and time-varying components. A functional time series forecasting method, based on dynamic functional principal component analysis, is implemented to produce forecasts for the time-varying components. By combining the forecasts of the time-varying components with the deterministic components, we obtain forecast curves for multiple populations. Illustrated by the age- and sex-specific mortality rates in the US, France, and Japan, which contain 51 states, 95 departments, and 47 prefectures, respectively, the proposed model delivers more accurate point and interval forecasts in forecasting multi-population mortality than several benchmark methods.

Submitted to arXiv on 31 May. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.