Multiwavelength Bulge-Disk Decomposition for the Galaxy M81 (NGC 3031). I. Morphology

Authors: Ye-Wei Mao, Jun-Yu Gong, Hua Gao, Si-Yue Yu

arXiv: 2306.01605v1 - DOI (astro-ph.GA)
48 Pages, 38 Figures, 5 Tables; Accepted for Publication in The Astrophysical Journal Supplement Series
License: CC BY 4.0

Abstract: A panchromatic investigation of morphology for the early-type spiral galaxy M81 is presented in this paper. We perform bulge-disk decomposition in M81 images at totally 20 wavebands from FUV to NIR obtained with GALEX, Swift, SDSS, WIYN, 2MASS, WISE, and Spitzer. Morphological parameters such as Sersic index, effective radius, position angle, and axis ratio for the bulge and the disk are thus derived at all the wavebands, which enables quantifying the morphological K-correction for M81 and makes it possible to reproduce images for the bulge and the disk in the galaxy at any waveband. The morphology as a function of wavelength appears as a variable-slope trend of the Sersic index and the effective radius, in which the variations are steep at UV--optical and shallow at optical--NIR bands; the position angle and the axis ratio keep invariable at least at optical--NIR bands. It is worth noting that, the Sersic index for the bulge reaches to about 4--5 at optical and NIR bands, but drops to about 1 at UV bands. This difference brings forward a caveat that, a classical bulge is likely misidentified for a pseudo-bulge or no bulge at high redshifts where galaxies are observed through rest-frame UV channels with optical telescopes. The next work of this series is planned to study spatially resolved SEDs for the bulge and the disk, respectively, and thereby explore stellar population properties and star formation/quenching history for the the galaxy composed of the subsystems.

Submitted to arXiv on 02 Jun. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.