When Decentralized Optimization Meets Federated Learning

Authors: Hongchang Gao, My T. Thai, Jie Wu

Accepted to IEEE Network

Abstract: Federated learning is a new learning paradigm for extracting knowledge from distributed data. Due to its favorable properties in preserving privacy and saving communication costs, it has been extensively studied and widely applied to numerous data analysis applications. However, most existing federated learning approaches concentrate on the centralized setting, which is vulnerable to a single-point failure. An alternative strategy for addressing this issue is the decentralized communication topology. In this article, we systematically investigate the challenges and opportunities when renovating decentralized optimization for federated learning. In particular, we discussed them from the model, data, and communication sides, respectively, which can deepen our understanding about decentralized federated learning.

Submitted to arXiv on 05 Jun. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.