Revealing the structure of language model capabilities

Authors: Ryan Burnell, Han Hao, Andrew R. A. Conway, Jose Hernandez Orallo

10 pages, 3 figures + references and appendices, for data and analysis code see https://github.com/RyanBurnell/revealing-LLM-capabilities

Abstract: Building a theoretical understanding of the capabilities of large language models (LLMs) is vital for our ability to predict and explain the behavior of these systems. Here, we investigate the structure of LLM capabilities by extracting latent capabilities from patterns of individual differences across a varied population of LLMs. Using a combination of Bayesian and frequentist factor analysis, we analyzed data from 29 different LLMs across 27 cognitive tasks. We found evidence that LLM capabilities are not monolithic. Instead, they are better explained by three well-delineated factors that represent reasoning, comprehension and core language modeling. Moreover, we found that these three factors can explain a high proportion of the variance in model performance. These results reveal a consistent structure in the capabilities of different LLMs and demonstrate the multifaceted nature of these capabilities. We also found that the three abilities show different relationships to model properties such as model size and instruction tuning. These patterns help refine our understanding of scaling laws and indicate that changes to a model that improve one ability might simultaneously impair others. Based on these findings, we suggest that benchmarks could be streamlined by focusing on tasks that tap into each broad model ability.

Submitted to arXiv on 14 Jun. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.