Bayesian Poisson Regression and Tensor Train Decomposition Model for Learning Mortality Pattern Changes during COVID-19 Pandemic
Authors: Wei Zhang, Antonietta Mira, Ernst C. Wit
Abstract: COVID-19 has led to excess deaths around the world, however it remains unclear how the mortality of other causes of death has changed during the pandemic. Aiming at understanding the wider impact of COVID-19 on other death causes, we study Italian data set that consists of monthly mortality counts of different causes from January 2015 to December 2020. Due to the high dimensional nature of the data, we develop a model which combines conventional Poisson regression with tensor train decomposition to explore the lower dimensional residual structure of the data. We take a Bayesian approach, impose priors on model parameters. Posterior inference is performed using an efficient Metropolis-Hastings within Gibbs algorithm. The validity of our approach is tested in simulation studies. Our method not only identifies differential effects of interventions on cause specific mortality rates through the Poisson regression component, but also offers informative interpretations of the relationship between COVID-19 and other causes of death as well as latent classes that underline demographic characteristics, temporal patterns and causes of death respectively.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.