Learning fixed points of recurrent neural networks by reparameterizing the network model

Authors: Vicky Zhu, Robert Rosenbaum

arXiv: 2307.06732v1 - DOI (q-bio.NC)
License: CC BY 4.0

Abstract: In computational neuroscience, fixed points of recurrent neural network models are commonly used to model neural responses to static or slowly changing stimuli. These applications raise the question of how to train the weights in a recurrent neural network to minimize a loss function evaluated on fixed points. A natural approach is to use gradient descent on the Euclidean space of synaptic weights. We show that this approach can lead to poor learning performance due, in part, to singularities that arise in the loss surface. We use a re-parameterization of the recurrent network model to derive two alternative learning rules that produces more robust learning dynamics. We show that these learning rules can be interpreted as steepest descent and gradient descent, respectively, under a non-Euclidean metric on the space of recurrent weights. Our results question the common, implicit assumption that learning in the brain should necessarily follow the negative Euclidean gradient of synaptic weights.

Submitted to arXiv on 13 Jul. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.