CausE: Towards Causal Knowledge Graph Embedding
Authors: Yichi Zhang, Wen Zhang
Abstract: Knowledge graph embedding (KGE) focuses on representing the entities and relations of a knowledge graph (KG) into the continuous vector spaces, which can be employed to predict the missing triples to achieve knowledge graph completion (KGC). However, KGE models often only briefly learn structural correlations of triple data and embeddings would be misled by the trivial patterns and noisy links in real-world KGs. To address this issue, we build the new paradigm of KGE in the context of causality and embedding disentanglement. We further propose a Causality-enhanced knowledge graph Embedding (CausE) framework. CausE employs causal intervention to estimate the causal effect of the confounder embeddings and design new training objectives to make stable predictions. Experimental results demonstrate that CausE could outperform the baseline models and achieve state-of-the-art KGC performance. We release our code in https://github.com/zjukg/CausE.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.