Constraining a companion of the galactic center black hole, Sgr A*

Authors: Clifford M. Will, Smadar Naoz, Aurélien Hees, Alexandria Tucker, Eric Zhang, Tuan Do, Andrea Ghez

arXiv: 2307.16646v1 - DOI (astro-ph.GA)
9 pages, 4 figures
License: CC BY 4.0

Abstract: We use 23 years of astrometric and radial velocity data on the orbit of the star S0-2 to constrain a hypothetical intermediate-mass black hole orbiting the massive black hole Sgr A* at the Galactic center. The data place upper limits on variations of the orientation of the stellar orbit (inclination, nodal angle, and pericenter) at levels between 0.02 and 0.07 degrees per year. We use a combination of analytic estimates and full numerical integrations of the orbit of S0-2 in the presence of a black-hole binary. For a companion IMBH whose semi-major axis $a_c$ is larger than that of S0-2 (1020 a.u.), we find that in the region between 1000 and 4000 a.u., a companion black hole with mass $m_c$ between $10^3$ and $10^5 M_\odot$ is excluded, with a boundary behaving as $a_c \sim m_c^{1/3}$. For a companion with $a_c < 1020$ a.u., we find that a black hole with mass between $10^3$ and $10^5 \, M_\odot$ is again excluded, with a boundary behaving as $a_c \sim m_c^{-1/2}$. These bounds arise from quadrupolar perturbations of the orbit of S0-2. However, significantly stronger bounds on the mass of an inner companion arise from the fact that the location of S0-2 is measured relative to the bright emission of Sgr A*. As a consequence, that separation is perturbed by the ``wobble'' of Sgr A* about the center of mass between it and the companion, leading to ``apparent'' perturbations of S0-2's orbit that also include a dipole component. The result is a set of bounds as small as $400 \, M_\odot$ at 200 a.u.; the numerical simulations suggest a bound from these effects varying as $a_c \sim m_c^{-1}$. We compare and contrast our results with those from a recent analysis by the GRAVITY collaboration.

Submitted to arXiv on 31 Jul. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.