Origin of correlated isolated flat bands in copper-substituted lead phosphate apatite

Authors: Sinéad M. Griffin

arXiv: 2307.16892v1 - DOI (cond-mat.supr-con)
License: CC BY 4.0

Abstract: A recent report of room temperature superconductivity at ambient pressure in Cu-substituted apatite (`LK99') has invigorated interest in the understanding of what materials and mechanisms can allow for high-temperature superconductivity. Here I perform density functional theory calculations on Cu-substituted lead phosphate apatite, identifying correlated isolated flat bands at the Fermi level, a common signature of high transition temperatures in already established families of superconductors. I elucidate the origins of these isolated bands as arising from a structural distortion induced by the Cu ions and a chiral charge density wave from the Pb lone pairs. These results suggest that a minimal two-band model can encompass much of the low-energy physics in this system. Finally, I discuss the implications of my results on possible superconductivity in Cu-doped apatite

Submitted to arXiv on 31 Jul. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.