JWST observations of galaxy damping wings during reionization interpreted with cosmological simulations

Authors: Laura C. Keating, James S. Bolton, Fergus Cullen, Martin G. Haehnelt, Ewald Puchwein, Girish Kulkarni

arXiv: 2308.05800v1 - DOI (astro-ph.GA)
13 pages, 7 figures. Submitted to MNRAS
License: CC BY 4.0

Abstract: Spectra of the highest redshift galaxies taken with JWST are now allowing us to see into the heart of the reionization epoch. Many of these observed galaxies exhibit strong damping wing absorption redward of their Lyman-$\alpha$ emission. These observations have been used to measure the redshift evolution of the neutral fraction of the intergalactic medium and sizes of ionized bubbles. However, these estimates have been made using a simple analytic model for the intergalactic damping wing. We explore the recent observations with models of inhomogeneous reionization from the Sherwood-Relics simulation suite. We carry out a comparison between the damping wings calculated from the simulations and from the analytic model. We find that although the agreement is good on the red side of the Lyman-$\alpha$ emission, there is a discrepancy on the blue side due to residual neutral hydrogen present in the simulations, which saturates the intergalactic absorption. For this reason, we find that it is difficult to reproduce the claimed observations of large bubble sizes at z ~ 7, which are driven by a detection of transmitted flux blueward of the Lyman-$\alpha$ emission. We suggest instead that the observations can be explained by a model with smaller ionized bubbles and larger intrinsic Lyman-$\alpha$ emission from the host galaxy.

Submitted to arXiv on 10 Aug. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.