Attention Is Not All You Need Anymore

Authors: Zhe Chen

Abstract: In recent years, the popular Transformer architecture has achieved great success in many application areas, including natural language processing and computer vision. Many existing works aim to reduce the computational and memory complexity of the self-attention mechanism in the Transformer by trading off performance. However, performance is key for the continuing success of the Transformer. In this paper, a drop-in replacement for the self-attention mechanism in the Transformer, called the Extractor, is proposed. Experimental results show that replacing the self-attention mechanism with the Extractor improves the performance of the Transformer. Furthermore, the proposed Extractor has the potential to run faster than the self-attention since it has a much shorter critical path of computation. Additionally, the sequence prediction problem in the context of text generation is formulated using variable-length discrete-time Markov chains, and the Transformer is reviewed based on our understanding.

Submitted to arXiv on 15 Aug. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.