Stars, gas, and star formation of distant post-starburst galaxies

Authors: Po-Feng Wu, Rachel Bezanson, Francesco D'Eugenio, Anna R. Gallazzi, Jenny E. Greene, Michael V. Maseda, Katherine A. Suess, Arjen van der Wel

arXiv: 2308.08681v1 - DOI (astro-ph.GA)
Accepted by ApJ
License: CC BY 4.0

Abstract: We present a comprehensive multi-wavelength study of 5 poststarburst galaxies with $M_\ast > 10^{11} M_\odot$ at $z\sim 0.7$, examining their stars, gas, and current and past star-formation activities. Using optical images from the Subaru telescope and Hubble Space Telescope, we observe a high incidence of companion galaxies and low surface brightness tidal features, indicating that quenching is closely related to interactions between galaxies. From optical spectra provided by the LEGA-C survey, we model the stellar continuum to derive the star-formation histories and show that the stellar masses of progenitors ranging from $2\times10^9 M_\odot$ to $10^{11} M_\odot$, undergoing a burst of star formation several hundred million years prior to observation, with a decay time scale of $\sim100$ million years. Our ALMA observations detect CO(2-1) emission in four galaxies, with the molecular gas spreading over up to $>1"$, or $\sim10$ kpc, with a mass of up to $\sim2 \times10^{10} M_\odot$. However, star-forming regions are unresolved by either the slit spectra or 3~GHz continuum observed by the Very Large Array. Comparisons between the star-formation rates and gas masses, and the sizes of CO emission and star-forming regions suggest a low star-forming efficiency. We show that the star-formation rates derived from IR and radio luminosities with commonly-used calibrations tend to overestimate the true values because of the prodigious amount of radiation from old stars and the contribution from AGN, as the optical spectra reveal weak AGN-driven outflows.

Submitted to arXiv on 16 Aug. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.