Revisitation of algebraic approach for time delay interferometry

Authors: Weisheng Huang, Pan-Pan Wang, Yu-Jie Tan, Cheng-Gang Shao

arXiv: 2308.14973v1 - DOI (physics.ins-det)
accepted by Physical Review D
License: CC BY 4.0

Abstract: Time Delay Interferometry (TDI) is often utilized in the data pre-processing of space-based gravitational wave detectors, primarily for suppressing laser frequency noise. About twenty years ago, assuming armlengths remain constant over time, researchers presented comprehensive mathematical descriptions for the first-generation and modified first-generation TDI. However, maintaining a steady distance between satellites is pragmatically challenging. Hence, the operator equation that neutralizes laser frequency noise, though provided, was deemed difficult to resolve. In this paper, we solve this equation in the context of a non-static scenario where distances between spacecrafts vary over time. Surprisingly, contrary to what previous researchers thought, the study reveals that the equation has only the zero solution, which suggests that no nonzero TDI combination can entirely suppress laser frequency noise under time-varying armlengths. This necessitates the persistent search for second-generation TDI combinations through alternative methods besides directly solving the operator equation. We establish the connections between TDI combinations of different generations and propose a search strategy for finding higher-generation TDI combinations by using generators of lower-generation TDI. The findings contribute to the ongoing discussion on gravitational waves and provide a novel insight into the hurdles faced in space-based gravitational wave detection.

Submitted to arXiv on 29 Aug. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.