Gender Bias in Multimodal Models: A Transnational Feminist Approach Considering Geographical Region and Culture

Authors: Abhishek Mandal, Suzanne Little, Susan Leavy

Selected for publication at the Aequitas 2023: Workshop on Fairness and Bias in AI | co-located with ECAI 2023, Krak\'ow, Poland
License: CC BY 4.0

Abstract: Deep learning based visual-linguistic multimodal models such as Contrastive Language Image Pre-training (CLIP) have become increasingly popular recently and are used within text-to-image generative models such as DALL-E and Stable Diffusion. However, gender and other social biases have been uncovered in these models, and this has the potential to be amplified and perpetuated through AI systems. In this paper, we present a methodology for auditing multimodal models that consider gender, informed by concepts from transnational feminism, including regional and cultural dimensions. Focusing on CLIP, we found evidence of significant gender bias with varying patterns across global regions. Harmful stereotypical associations were also uncovered related to visual cultural cues and labels such as terrorism. Levels of gender bias uncovered within CLIP for different regions aligned with global indices of societal gender equality, with those from the Global South reflecting the highest levels of gender bias.

Submitted to arXiv on 10 Sep. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.