Beyond the Drake Equation: A Time-Dependent Inventory of Habitable Planets and Life-Bearing Worlds in the Solar Neighborhood

Authors: Piero Madau

arXiv: 2309.11927v1 - DOI (astro-ph.EP)
14 pages, 8 figures, submitted to AAS Journals
License: CC BY 4.0

Abstract: We introduce a mathematical framework for statistical exoplanet population and astrobiology studies that may help directing future observational efforts and experiments. The approach is based on a set of differential equations and provides a time-dependent mapping between star formation, metal enrichment, and the occurrence of exoplanets and potentially life-harboring worlds over the chemo-population history of the solar neighborhood. Our results are summarized as follows: 1) the formation of exoplanets in the solar vicinity was episodic, starting with the emergence of the thick disk about 11 Gyr ago; 2) within 100 pc from the Sun, there are as many as 11,000 (eta/0.24) Earth-size planets in the habitable zone ("temperate terrestrial planets" or TTPs) of K-type stars. The solar system is younger than the median TTP, and was created in a star formation surge that peaked 5.5 Gyr ago and was triggered by an external agent; 3) the metallicity modulation of the giant planet occurrence rate results in a later typical formation time, with TTPs outnumbering giant planets at early times; 4) the closest, life-harboring Earth-like planet would be < 20 pc away if microbial life arose as soon as it did on Earth in > 1 % of the TTPs around K stars. If simple life is abundant (fast abiogenesis), it is also old, as it would have emerged more than 8 Gyr ago in about one third of all life-bearing planets today. Older Earth analogs are more likely to have developed sufficiently complex life capable of altering the environment and producing detectable oxygenic biosignatures.

Submitted to arXiv on 21 Sep. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.