A Brief History of Prompt: Leveraging Language Models. (Through Advanced Prompting)

Authors: Golam Md Muktadir

License: CC BY 4.0

Abstract: This paper presents a comprehensive exploration of the evolution of prompt engineering and generation in the field of natural language processing (NLP). Starting from the early language models and information retrieval systems, we trace the key developments that have shaped prompt engineering over the years. The introduction of attention mechanisms in 2015 revolutionized language understanding, leading to advancements in controllability and context-awareness. Subsequent breakthroughs in reinforcement learning techniques further enhanced prompt engineering, addressing issues like exposure bias and biases in generated text. We examine the significant contributions in 2018 and 2019, focusing on fine-tuning strategies, control codes, and template-based generation. The paper also discusses the growing importance of fairness, human-AI collaboration, and low-resource adaptation. In 2020 and 2021, contextual prompting and transfer learning gained prominence, while 2022 and 2023 witnessed the emergence of advanced techniques like unsupervised pre-training and novel reward shaping. Throughout the paper, we reference specific research studies that exemplify the impact of various developments on prompt engineering. The journey of prompt engineering continues, with ethical considerations being paramount for the responsible and inclusive future of AI systems.

Submitted to arXiv on 30 Sep. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.