Systematic AI Approach for AGI: Addressing Alignment, Energy, and AGI Grand Challenges
Authors: Eren Kurshan
Abstract: AI faces a trifecta of grand challenges the Energy Wall, the Alignment Problem and the Leap from Narrow AI to AGI. Contemporary AI solutions consume unsustainable amounts of energy during model training and daily operations.Making things worse, the amount of computation required to train each new AI model has been doubling every 2 months since 2020, directly translating to increases in energy consumption.The leap from AI to AGI requires multiple functional subsystems operating in a balanced manner, which requires a system architecture. However, the current approach to artificial intelligence lacks system design; even though system characteristics play a key role in the human brain from the way it processes information to how it makes decisions. Similarly, current alignment and AI ethics approaches largely ignore system design, yet studies show that the brains system architecture plays a critical role in healthy moral decisions.In this paper, we argue that system design is critically important in overcoming all three grand challenges. We posit that system design is the missing piece in overcoming the grand challenges.We present a Systematic AI Approach for AGI that utilizes system design principles for AGI, while providing ways to overcome the energy wall and the alignment challenges.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.