The European Low Frequency Survey

Authors: Aniello Mennella, Kam Arnold, Susanna Azzoni, Carlo Baccigalupi, Anthony Banday, R. Belen Barreiro, Darcy Barron, Marco Bersanelli, Sean Casey, Loris Colombo, Elena de la Hoz, Cristian Franceschet, Michael E. Jones, Ricardo T. Genova-Santos, Roger J. Hoyland, Adrian T. Lee, Enrique Martinez-Gonzalez, Filippo Montonati, Jose-Alberto Rubino-Martin, Angela Taylor, Patricio Vielva

arXiv: 2310.16509v1 - DOI (astro-ph.CO)
to appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Sciences
License: CC BY 4.0

Abstract: In this paper we present the European Low Frequency Survey (ELFS), a project that will enable foregrounds-free measurements of primordial $B$-mode polarization to a level 10$^{-3}$ by measuring the Galactic and extra-Galactic emissions in the 5--120\,GHz frequency window. Indeed, the main difficulty in measuring the B-mode polarization comes not just from its sheer faintness, but from the fact that many other objects in the Universe also emit polarized microwaves, which mask the faint CMB signal. The first stage of this project will be carried out in synergy with the Simons Array (SA) collaboration, installing a 5.5--11 GHz coherent receiver at the focus of one of the three 3.5\,m SA telescopes in Atacama, Chile ("ELFS on SA"). The receiver will be equipped with a fully digital back-end based on the latest Xilinx RF System-on-Chip devices that will provide frequency resolution of 1\,MHz across the whole observing band, allowing us to clean the scientific signal from unwanted radio frequency interference, particularly from low-Earth orbit satellite mega-constellations. This paper reviews the scientific motivation for ELFS and its instrumental characteristics, and provides an update on the development of ELFS on SA.

Submitted to arXiv on 25 Oct. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.