Interplay between Chiral Charge Density Wave and Superconductivity in Kagome Superconductors: A Self-consistent Theoretical Analysis
Authors: Hong-Min Jiang, Min Mao, Zhi-Yong Miao, Shun-Li Yu, Jian-Xin Li
Abstract: Inspired by the recent discovery of a successive evolutions of electronically ordered states, we present a self-consistent theoretical analysis that treats the interactions responsible for the chiral charge order and superconductivity on an equal footing. It is revealed that the self-consistent theory captures the essential features of the successive temperature evolutions of the electronic states from the high-temperature ``triple-$Q$" $2\times 2$ charge-density-wave state to the nematic charge-density-wave phase, and finally to the low-temperature superconducting state coexisting with the nematic charge density wave. We provide a comprehensive explanation for the temperature evolutions of the charge ordered states and discuss the consequences of the intertwining of the superconductivity with the nematic charge density wave. Our findings not only account for the successive temperature evolutions of the ordered electronic states discovered in experiments but also provide a natural explanation for the two-fold rotational symmetry observed in both the charge-density-wave and superconducting states. Moreover, the intertwining of the superconductivity with the nematic charge density wave order may also be an advisable candidate to reconcile the divergent or seemingly contradictory experimental outcomes regarding the superconducting properties.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.