The advantage of Bolometric Interferometry for controlling Galactic foreground contamination in CMB primordial B-modes measurements

Authors: E. Manzan, M. Regnier, J-Ch. Hamilton, A. Mennella, J. Errard, L. Zapelli, S. A. Torchinsky, S. Paradiso, E. Battistelli, M. Bersanelli, P. De Bernardis, M. De Petris, G. D'Alessandro, M. Gervasi, S. Masi, M. Piat, E. Rasztocky, G. E Romero, C. G. Scoccola, M. Zannoni, the QUBIC Collaboration

arXiv: 2311.01814v1 - DOI (astro-ph.CO)
To appear in Proc. of the mm Universe 2023 conference, Grenoble (France), June 2023, published by F. Mayet et al. (Eds), EPJ Web of conferences, EDP Sciences
License: CC BY 4.0

Abstract: In the quest for the faint primordial B-mode polarization of the Cosmic Microwave Background, three are the key requirements for any present or future experiment: an utmost sensitivity, excellent control over instrumental systematic effects and over Galactic foreground contamination. Bolometric Interferometry (BI) is a novel technique that matches them all by combining the sensitivity of bolometric detectors, the control of instrumental systematics from interferometry and a software-based, tunable, in-band spectral resolution due to its ability to perform band-splitting during data analysis (spectral imaging). In this paper, we investigate how the spectral imaging capability of BI can help in detecting residual contamination in case an over-simplified model of foreground emission is assumed in the analysis. To mimic this situation, we focus on the next generation of ground-based CMB experiment, CMB-S4, and compare its anticipated sensitivities, frequency and sky coverage with a hypothetical version of the same experiment based on BI, CMB-S4/BI, assuming that line-of-sight (LOS) frequency decorrelation is present in dust emission but is not accounted for during component separation. We show results from a Monte-Carlo analysis based on a parametric component separation method (FGBuster), highlighting how BI has the potential to diagnose the presence of foreground residuals in estimates of the tensor-to-scalar ratio $r$ in the case of unaccounted Galactic dust LOS frequency decorrelation.

Submitted to arXiv on 03 Nov. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.