Evaluating the Efficacy of Interactive Language Therapy Based on LLM for High-Functioning Autistic Adolescent Psychological Counseling

Authors: Yujin Cho, Mingeon Kim, Seojin Kim, Oyun Kwon, Ryan Donghan Kwon, Yoonha Lee, Dohyun Lim

License: CC BY-NC-ND 4.0

Abstract: This study investigates the efficacy of Large Language Models (LLMs) in interactive language therapy for high-functioning autistic adolescents. With the rapid advancement of artificial intelligence, particularly in natural language processing, LLMs present a novel opportunity to augment traditional psychological counseling methods. This research primarily focuses on evaluating the LLM's ability to engage in empathetic, adaptable, and contextually appropriate interactions within a therapeutic setting. A comprehensive evaluation was conducted by a panel of clinical psychologists and psychiatrists using a specially developed scorecard. The assessment covered various aspects of the LLM's performance, including empathy, communication skills, adaptability, engagement, and the ability to establish a therapeutic alliance. The study avoided direct testing with patients, prioritizing privacy and ethical considerations, and instead relied on simulated scenarios to gauge the LLM's effectiveness. The results indicate that LLMs hold significant promise as supportive tools in therapy, demonstrating strengths in empathetic engagement and adaptability in conversation. However, challenges in achieving the depth of personalization and emotional understanding characteristic of human therapists were noted. The study also highlights the importance of ethical considerations in the application of AI in therapeutic contexts. This research provides valuable insights into the potential and limitations of using LLMs in psychological counseling for autistic adolescents. It lays the groundwork for future explorations into AI's role in mental health care, emphasizing the need for ongoing development to enhance the capabilities of these models in therapeutic settings.

Submitted to arXiv on 12 Nov. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.