Electromagnetic Counterparts Powered by Kicked Remnants of Black Hole Binary Mergers in AGN Disks

Authors: Ken Chen, Zi-Gao Dai

arXiv: 2311.10518v1 - DOI (astro-ph.HE)
19 pages, 9 figures, accepted for publication in ApJ
License: CC BY 4.0

Abstract: The disk of an active galactic nucleus (AGN) is widely regarded as a prominent formation channel of binary black hole (BBH) mergers that can be detected through gravitational waves (GWs). Besides, the presence of dense environmental gas offers the potential for an embedded BBH merger to produce electromagnetic (EM) counterparts. In this paper, we investigate EM emission powered by the kicked remnant of a BBH merger occurring within the AGN disk. The remnant BH will launch a jet via accreting magnetized medium as it traverses the disk. The resulting jet will decelerate and dissipate energy into a lateral cocoon during its propagation. We explore three radiation mechanisms of the jet cocoon system: jet breakout emission, disk cocoon cooling emission, and jet cocoon cooling emission, and find that the jet cocoon cooling emission is more likely to be detected in its own frequency bands. We predict a soft X-ray transient, lasting for O($10^3$) s, to serve as an EM counterpart, of which the time delay O(10) days after the GW trigger contributes to follow-up observations. Consequently, BBH mergers in the AGN disk represent a novel multimessenger source. In the future, enhanced precision in measuring and localizing GWs, coupled with diligent searches for such associated EM signal, will effectively validate or restrict the origin of BBH mergers in the AGN disk.

Submitted to arXiv on 17 Nov. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.