What if an SQL Statement Returned a Database?

Authors: Joris Nix, Jens Dittrich

License: CC BY-NC-SA 4.0

Abstract: Every SQL statement is limited to return a single, possibly denormalized, table. This design decision has far reaching consequences. (1.) for databases users in terms of slow query performance, long query result transfer times, usability-issues of SQL in web applications and object-relational mappers. In addition, (2.) for database architects it has consequences when designing query optimizers leading to logical (algebraic) join enumeration effort, memory consumption for intermediate result materialization, and physical operator selection effort. So basically, the entire query optimization stack is shaped by that design decision. In this paper, we argue that the single-table limitation should be dropped. We extend the SELECT-clause of SQL by a keyword 'RESULTDB' to support returning a result database. Our approach has clear semantics, i.e. our extended SQL returns subsets of all tables with only those tuples that would be part of the traditional (single-table) query result set, however without performing any denormalization through joins. Our SQL-extension is downward compatible. Moreover, we discuss the surprisingly long list of benefits of our approach. First, for database users: far simpler and more readable application code, better query performance, smaller query results, better query result transfer times. Second, for database architects, we present how to leverage existing closed source systems as well as change open source database systems to support our feature. We propose a couple of algorithms to integrate our feature into both closed-source as well as open source database systems. We present an initial experimental study with promising results.

Submitted to arXiv on 01 Dec. 2023

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.