Quantum Optimization: Potential, Challenges, and the Path Forward
Authors: Amira Abbas, Andris Ambainis, Brandon Augustino, Andreas Bärtschi, Harry Buhrman, Carleton Coffrin, Giorgio Cortiana, Vedran Dunjko, Daniel J. Egger, Bruce G. Elmegreen, Nicola Franco, Filippo Fratini, Bryce Fuller, Julien Gacon, Constantin Gonciulea, Sander Gribling, Swati Gupta, Stuart Hadfield, Raoul Heese, Gerhard Kircher, Thomas Kleinert, Thorsten Koch, Georgios Korpas, Steve Lenk, Jakub Marecek, Vanio Markov, Guglielmo Mazzola, Stefano Mensa, Naeimeh Mohseni, Giacomo Nannicini, Corey O'Meara, Elena Peña Tapia, Sebastian Pokutta, Manuel Proissl, Patrick Rebentrost, Emre Sahin, Benjamin C. B. Symons, Sabine Tornow, Victor Valls, Stefan Woerner, Mira L. Wolf-Bauwens, Jon Yard, Sheir Yarkoni, Dirk Zechiel, Sergiy Zhuk, Christa Zoufal
Abstract: Recent advances in quantum computers are demonstrating the ability to solve problems at a scale beyond brute force classical simulation. As such, a widespread interest in quantum algorithms has developed in many areas, with optimization being one of the most pronounced domains. Across computer science and physics, there are a number of algorithmic approaches, often with little linkage. This is further complicated by the fragmented nature of the field of mathematical optimization, where major classes of optimization problems, such as combinatorial optimization, convex optimization, non-convex optimization, and stochastic extensions, have devoted communities. With these aspects in mind, this work draws on multiple approaches to study quantum optimization. Provably exact versus heuristic settings are first explained using computational complexity theory - highlighting where quantum advantage is possible in each context. Then, the core building blocks for quantum optimization algorithms are outlined to subsequently define prominent problem classes and identify key open questions that, if answered, will advance the field. The effects of scaling relevant problems on noisy quantum devices are also outlined in detail, alongside meaningful benchmarking problems. We underscore the importance of benchmarking by proposing clear metrics to conduct appropriate comparisons with classical optimization techniques. Lastly, we highlight two domains - finance and sustainability - as rich sources of optimization problems that could be used to benchmark, and eventually validate, the potential real-world impact of quantum optimization.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.