Digger: Detecting Copyright Content Mis-usage in Large Language Model Training
Authors: Haodong Li, Gelei Deng, Yi Liu, Kailong Wang, Yuekang Li, Tianwei Zhang, Yang Liu, Guoai Xu, Guosheng Xu, Haoyu Wang
Abstract: Pre-training, which utilizes extensive and varied datasets, is a critical factor in the success of Large Language Models (LLMs) across numerous applications. However, the detailed makeup of these datasets is often not disclosed, leading to concerns about data security and potential misuse. This is particularly relevant when copyrighted material, still under legal protection, is used inappropriately, either intentionally or unintentionally, infringing on the rights of the authors. In this paper, we introduce a detailed framework designed to detect and assess the presence of content from potentially copyrighted books within the training datasets of LLMs. This framework also provides a confidence estimation for the likelihood of each content sample's inclusion. To validate our approach, we conduct a series of simulated experiments, the results of which affirm the framework's effectiveness in identifying and addressing instances of content misuse in LLM training processes. Furthermore, we investigate the presence of recognizable quotes from famous literary works within these datasets. The outcomes of our study have significant implications for ensuring the ethical use of copyrighted materials in the development of LLMs, highlighting the need for more transparent and responsible data management practices in this field.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.