Quantum eigenvalue processing
Authors: Guang Hao Low, Yuan Su
Abstract: Many problems in linear algebra -- such as those arising from non-Hermitian physics and differential equations -- can be solved on a quantum computer by processing eigenvalues of the non-normal input matrices. However, the existing Quantum Singular Value Transformation (QSVT) framework is ill-suited to this task, as eigenvalues and singular values are different in general. We present a Quantum EigenValue Transformation (QEVT) framework for applying arbitrary polynomial transformations on eigenvalues of block-encoded non-normal operators, and a related Quantum EigenValue Estimation (QEVE) algorithm for operators with real spectra. QEVT has query complexity to the block encoding nearly recovering that of the QSVT for a Hermitian input, and QEVE achieves the Heisenberg-limited scaling for diagonalizable input matrices. As applications, we develop a linear differential equation solver with strictly linear time query complexity for average-case diagonalizable operators, as well as a ground state preparation algorithm that upgrades previous nearly optimal results for Hermitian Hamiltonians to diagonalizable matrices with real spectra. Underpinning our algorithms is an efficient method to prepare a quantum superposition of Faber polynomials, which generalize the nearly-best uniform approximation properties of Chebyshev polynomials to the complex plane. Of independent interest, we also develop techniques to generate $n$ Fourier coefficients with $\mathbf{O}(\mathrm{polylog}(n))$ gates compared to prior approaches with linear cost.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.