AI-based Personalization and Trust in Digital Finance
Authors: Vijaya Kanaparthi
Abstract: Personalized services bridge the gap between a financial institution and its customers and are built on trust. The more we trust the product, the keener we are to disclose our personal information in order to receive a highly personalized service that maximizes consumer value. Artificial Intelligence (AI) can help financial institutions tailor relevant products and services to their customers as well as improve their credit risk management, compliance, and fraud detection capabilities by incorporating chatbots and face recognition systems. The present study has analyzed sixteen research papers using the PRISMA model to perform a Systematic Literature Review (SLR). It has identified five research gaps and corresponding questions to analyze the present scenario. One of the gaps is credit risk detection for improved personalization and trust. Finally, an AI-based credit risk detection model has been built using four supervised machine learning classifiers viz., Support Vector Machine, Random Forest, Decision Tree, and Logistic Regression. Performance comparison shows an optimal performance of the model giving accuracy of ~89%, precision of ~88%, recall of ~89%, specificity of ~89%, F1_score of ~88%, and AUC of 0.77 for the Random Forest classifier. This model is foreseen to be most suitable for envisaging customer characteristics for which personalized credit risk mitigation strategies are particularly effective as compared to other existing works presented in this study.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.