"Understanding AI": Semantic Grounding in Large Language Models
Authors: Holger Lyre
Abstract: Do LLMs understand the meaning of the texts they generate? Do they possess a semantic grounding? And how could we understand whether and what they understand? I start the paper with the observation that we have recently witnessed a generative turn in AI, since generative models, including LLMs, are key for self-supervised learning. To assess the question of semantic grounding, I distinguish and discuss five methodological ways. The most promising way is to apply core assumptions of theories of meaning in philosophy of mind and language to LLMs. Grounding proves to be a gradual affair with a three-dimensional distinction between functional, social and causal grounding. LLMs show basic evidence in all three dimensions. A strong argument is that LLMs develop world models. Hence, LLMs are neither stochastic parrots nor semantic zombies, but already understand the language they generate, at least in an elementary sense.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.