Probing the dark matter haloes of external galaxies with stellar streams

Authors: Madison Walder, Denis Erkal, Michelle Collins, David Martinez-Delgado

arXiv: 2402.13314v1 - DOI (astro-ph.GA)
16 pages, 15 figures (+4 in appendix), submitted to MNRAS

Abstract: Stellar streams have proven to be powerful tools for measuring the Milky Way's gravitational potential and hence its dark matter halo. In the coming years, Vera Rubin, Euclid, ARRAKIHS, and NGRST will uncover a plethora of streams around external galaxies. Although great in number, observations of these distant streams will often be limited to only the on-sky position of the stream. In this work, we explore how well we will be able to measure the dark matter haloes of these galaxies by fitting simplified mock streams with a variety of intrinsic and orbital properties in a range of data availability scenarios. We find that streams with multiple wraps around their host galaxy can constrain the overall radial profile and scale radius of the potential without radial velocities. In many other cases, a single radial velocity measurement often provides a significant boost to constraining power for the radial profile, scale radius, and enclosed mass of the dark matter halo. Given the wealth of data expected soon, this suggests that we will be able to measure the dark matter haloes of a statistically significant sample of galaxies with stellar streams in the coming years.

Submitted to arXiv on 20 Feb. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.