Interpreting Grokked Transformers in Complex Modular Arithmetic

Authors: Hiroki Furuta, Gouki Minegishi, Yusuke Iwasawa, Yutaka Matsuo

Code: https://github.com/frt03/grok_mod_poly
License: CC BY 4.0

Abstract: Grokking has been actively explored to reveal the mystery of delayed generalization. Identifying interpretable algorithms inside the grokked models is a suggestive hint to understanding its mechanism. In this work, beyond the simplest and well-studied modular addition, we observe the internal circuits learned through grokking in complex modular arithmetic via interpretable reverse engineering, which highlights the significant difference in their dynamics: subtraction poses a strong asymmetry on Transformer; multiplication requires cosine-biased components at all the frequencies in a Fourier domain; polynomials often result in the superposition of the patterns from elementary arithmetic, but clear patterns do not emerge in challenging cases; grokking can easily occur even in higher-degree formulas with basic symmetric and alternating expressions. We also introduce the novel progress measure for modular arithmetic; Fourier Frequency Sparsity and Fourier Coefficient Ratio, which not only indicate the late generalization but also characterize distinctive internal representations of grokked models per modular operation. Our empirical analysis emphasizes the importance of holistic evaluation among various combinations.

Submitted to arXiv on 26 Feb. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.