Exploration of the polarization angle variability of the Crab Nebula with POLARBEAR and its application to the search for axion-like particles
Authors: Shunsuke Adachi, Tylor Adkins, Carlo Baccigalupi, Yuji Chinone, Kevin T. Crowley, Josquin Errard, Giulio Fabbian, Chang Feng, Takuro Fujino, Masaya Hasegawa, Masashi Hazumi, Oliver Jeong, Daisuke Kaneko, Brian Keating, Akito Kusaka, Adrian T. Lee, Anto I. Lonappan, Yuto Minami, Masaaki Murata, Lucio Piccirillo, Christian L. Reichardt, Praween Siritanasak, Jake Spisak, Satoru Takakura, Grant P. Teply, Kyohei Yamada
Abstract: The Crab Nebula, also known as Tau A, is a polarized astronomical source at millimeter wavelengths. It has been used as a stable light source for polarization angle calibration in millimeter-wave astronomy. However, it is known that its intensity and polarization vary as a function of time at a variety of wavelengths. Thus, it is of interest to verify the stability of the millimeter-wave polarization. If detected, polarization variability may be used to better understand the dynamics of Tau A, and for understanding the validity of Tau~A as a calibrator. One intriguing application of such observation is to use it for the search of axion-light particles (ALPs). Ultralight ALPs couple to photons through a Chern-Simons term, and induce a temporal oscillation in the polarization angle of linearly polarized sources. After assessing a number of systematic errors and testing for internal consistency, we evaluate the variability of the polarization angle of the Crab Nebula using 2015 and 2016 observations with the 150 GHz POLARBEAR instrument. We place a median 95% upper bound of polarization oscillation amplitude $A < 0.065^\circ$ over the oscillation frequencies from $0.75~\mathrm{year}^{-1}$ to $0.66~\mathrm{hour}^{-1}$. Assuming that no sources other than ALP are causing Tau A's polarization angle variation, that the ALP constitutes all the dark matter, and that the ALP field is a stochastic Gaussian field, this bound translates into a median 95% upper bound of ALP-photon coupling $g_{a\gamma\gamma} < 2.16\times10^{-12}\,\mathrm{GeV}^{-1}\times(m_a/10^{-21} \mathrm{eV})$ in the mass range from $9.9\times10^{-23} \mathrm{eV}$ to $7.7\times10^{-19} \mathrm{eV}$. This demonstrates that this type of analysis using bright polarized sources is as competitive as those using the polarization of cosmic microwave background in constraining ALPs.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.