Vision-Language Models for Medical Report Generation and Visual Question Answering: A Review

Authors: Iryna Hartsock, Ghulam Rasool

43 pages; paper edited and restructured

Abstract: Medical vision-language models (VLMs) combine computer vision (CV) and natural language processing (NLP) to analyze visual and textual medical data. Our paper reviews recent advancements in developing VLMs specialized for healthcare, focusing on models designed for medical report generation and visual question answering (VQA). We provide background on NLP and CV, explaining how techniques from both fields are integrated into VLMs to enable learning from multimodal data. Key areas we address include the exploration of medical vision-language datasets, in-depth analyses of architectures and pre-training strategies employed in recent noteworthy medical VLMs, and comprehensive discussion on evaluation metrics for assessing VLMs' performance in medical report generation and VQA. We also highlight current challenges and propose future directions, including enhancing clinical validity and addressing patient privacy concerns. Overall, our review summarizes recent progress in developing VLMs to harness multimodal medical data for improved healthcare applications.

Submitted to arXiv on 04 Mar. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.