The clique chromatic number of sparse random graphs
Authors: Manuel Fernandez V, Lutz Warnke
Abstract: The clique chromatic number of a graph is the smallest number of colors in a vertex coloring so that no maximal clique is monochromatic. In this paper, we determine the order of magnitude of the clique chromatic number of the random graph G_{n,p} for most edge-probabilities p in the range n^{-2/5} \ll p \ll 1. This resolves open problems and questions of Lichev, Mitsche and Warnke as well as Alon and Krievelevich. One major proof difficulty stems from high-degree vertices, which prevent maximal cliques in their neighborhoods: we deal with these vertices by an intricate union bound argument, that combines the probabilistic method with new degree counting arguments in order to enable Janson's inequality. This way we determine the asymptotics of the clique chromatic number of G_{n,p} in some ranges, and discover a surprising new phenomenon that contradicts earlier predictions for edge-probabilities p close to n^{-2/5}.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.