Charting the main sequence of star-forming galaxies out to redshifts z~7

Authors: M. P. Koprowski, J. V. Wijesekera, J. S. Dunlop, D. J. McLeod, M. J. Michałowski, K. Lisiecki, R. J. McLure

arXiv: 2403.06575v1 - DOI (astro-ph.GA)
16 pages, 11 figures, 2 tables, submitted to A&A
License: CC BY 4.0

Abstract: We present a new determination of the star-forming main sequence (MS), obtained through stacking 100k K-band-selected galaxies in the far-IR Herschel and James Clerk Maxwell Telescope (JCMT) imaging. By fitting the dust emission curve to the stacked far-IR photometry, we derive the IR luminosities (LIR) and, hence, star formation rates (SFR) out to z~7. The functional form of the MS is found, with the linear SFR-M* relation that flattens at high stellar masses and the normalization that increases exponentially with redshift. We derive the corresponding redshift evolution of the specific star formation rate (sSFR) and compare our findings with the recent literature. We find our MS to be exhibiting slightly lower normalization at z<=2 and to flatten at larger stellar masses at high redshifts. By deriving the relationship between the peak dust temperature (Td) and redshift, where Td increases linearly from ~20K at z=0.5 to ~50 K at z=6, we conclude that the apparent inconsistencies in the shapes of the MS are most likely caused by the different dust temperatures assumed when deriving SFRs in the absence of far-IR data. Finally, we investigate the derived shape of the star-forming MS by simulating the time evolution of the observed galaxy stellar mass function (GSMF). While the simulated GSMF is in good agreement with the observed one, some inconsistencies persist. In particular, we find the simulated GSMF to be somewhat overpredicting the number density of low-mass galaxies at z>2.

Submitted to arXiv on 11 Mar. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.