FastDecode: High-Throughput GPU-Efficient LLM Serving using Heterogeneous Pipelines

Authors: Jiaao He, Jidong Zhai

15 pages, 15 figures
License: CC BY-NC-SA 4.0

Abstract: Cost of serving large language models (LLM) is high, but the expensive and scarce GPUs are poorly efficient when generating tokens sequentially, unless the batch of sequences is enlarged. However, the batch size is limited by some constantly reused intermediate results, namely KV-Cache. They occupy too much memory to fit more sequences into a GPU simultaneously. While they could be offloaded to host memory, the CPU-GPU bandwidth is an inevitable bottleneck. We find a way to decompose the transformer models into two parts of different characteristics, one of which includes the memory-bound KV-Cache accessing. Our key insight is that the aggregated memory capacity, bandwidth, and computing power of CPUs across multiple nodes is an efficient option to process this part. Performance improvement comes from reduced data transmission overhead and boosted GPU throughput to process the other model part. Moreover, we address efficiency challenges brought by heterogeneity at both temporal and inter-device scopes using scheduling and performance modeling techniques. Evaluation results show that our system achieves 1.88x - 5.04x the throughput of vLLM when serving modern LLMs with the same GPU.

Submitted to arXiv on 18 Mar. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.