Evolution beats random chance: Performance-dependent network evolution for enhanced computational capacity
Authors: Manish Yadav, Sudeshna Sinha, Merten Stender
Abstract: The quest to understand structure-function relationships in networks across scientific disciplines has intensified. However, the optimal network architecture remains elusive, particularly for complex information processing. Therefore, we investigate how optimal and specific network structures form to efficiently solve distinct tasks using a novel framework of performance-dependent network evolution, leveraging reservoir computing principles. Our study demonstrates that task-specific minimal network structures obtained through this framework consistently outperform networks generated by alternative growth strategies and Erd\H{o}s-R\'enyi random networks. Evolved networks exhibit unexpected sparsity and adhere to scaling laws in node-density space while showcasing a distinctive asymmetry in input and information readout nodes distribution. Consequently, we propose a heuristic for quantifying task complexity from performance-dependently evolved networks, offering valuable insights into the evolutionary dynamics of network structure-function relationships. Our findings not only advance the fundamental understanding of process-specific network evolution but also shed light on the design and optimization of complex information processing mechanisms, notably in machine learning.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.