Automated Social Science: Language Models as Scientist and Subjects

Authors: Benjamin S. Manning, Kehang Zhu, John J. Horton

License: CC BY 4.0

Abstract: We present an approach for automatically generating and testing, in silico, social scientific hypotheses. This automation is made possible by recent advances in large language models (LLM), but the key feature of the approach is the use of structural causal models. Structural causal models provide a language to state hypotheses, a blueprint for constructing LLM-based agents, an experimental design, and a plan for data analysis. The fitted structural causal model becomes an object available for prediction or the planning of follow-on experiments. We demonstrate the approach with several scenarios: a negotiation, a bail hearing, a job interview, and an auction. In each case, causal relationships are both proposed and tested by the system, finding evidence for some and not others. We provide evidence that the insights from these simulations of social interactions are not available to the LLM purely through direct elicitation. When given its proposed structural causal model for each scenario, the LLM is good at predicting the signs of estimated effects, but it cannot reliably predict the magnitudes of those estimates. In the auction experiment, the in silico simulation results closely match the predictions of auction theory, but elicited predictions of the clearing prices from the LLM are inaccurate. However, the LLM's predictions are dramatically improved if the model can condition on the fitted structural causal model. In short, the LLM knows more than it can (immediately) tell.

Submitted to arXiv on 17 Apr. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.