An Empirical Study of LLaMA3 Quantization: From LLMs to MLLMs

Authors: Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi, Xianglong Liu, Michele Magno

Abstract: The LLaMA family has become one of the most powerful open-source Large Language Models (LLMs) and the popular LLM backbones of Multimodal Large Language Models (MLLMs), widely applied in Computer Vision (CV) and Natural Language Understanding (NLU) tasks. Notably, LLaMA3 models have recently been released and achieve impressive performance across various with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-limited scenarios, we explore LLaMA3's capabilities when quantized to low bit-width. This exploration can potentially unveil new insights and challenges for low-bit quantization of LLaMA3 and other forthcoming LLMs, especially in addressing performance degradation problems that suffer in LLM compression. Specifically, we comprehensively evaluate the 10 existing post-training quantization and LoRA-finetuning methods of LLaMA3 on 1-8 bits and diverse datasets to reveal LLaMA3's low-bit quantization performance. To uncover the capabilities of low-bit quantized MLLM, we assessed the performance of the LLaMA3-based LLaVA-Next-8B model under 2-4 ultra-low bits with post-training quantization methods. Our experimental results indicate that LLaMA3 still suffers non-negligent degradation in linguistic and visual contexts, particularly under ultra-low bit widths. This highlights the significant performance gap under low bit-width that needs to be bridged in future developments. We expect that this empirical study will prove valuable in advancing future models, driving LLMs and MLLMs to achieve higher accuracy at lower bit to enhance practicality.

Submitted to arXiv on 22 Apr. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.