From ChatGPT, DALL-E 3 to Sora: How has Generative AI Changed Digital Humanities Research and Services?

Authors: Jiangfeng Liu, Ziyi Wang, Jing Xie, Lei Pei

21 pages, 3 figures
License: CC BY-NC-ND 4.0

Abstract: Generative large-scale language models create the fifth paradigm of scientific research, organically combine data science and computational intelligence, transform the research paradigm of natural language processing and multimodal information processing, promote the new trend of AI-enabled social science research, and provide new ideas for digital humanities research and application. This article profoundly explores the application of large-scale language models in digital humanities research, revealing their significant potential in ancient book protection, intelligent processing, and academic innovation. The article first outlines the importance of ancient book resources and the necessity of digital preservation, followed by a detailed introduction to developing large-scale language models, such as ChatGPT, and their applications in document management, content understanding, and cross-cultural research. Through specific cases, the article demonstrates how AI can assist in the organization, classification, and content generation of ancient books. Then, it explores the prospects of AI applications in artistic innovation and cultural heritage preservation. Finally, the article explores the challenges and opportunities in the interaction of technology, information, and society in the digital humanities triggered by AI technologies.

Submitted to arXiv on 29 Apr. 2024

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.