Consistent response prediction for multilayer networks on unknown manifolds
Authors: Aranyak Acharyya, Jesús Arroyo Relión, Michael Clayton, Marta Zlatic, Youngser Park, Carey E. Priebe
Abstract: Our paper deals with a collection of networks on a common set of nodes, where some of the networks are associated with responses. Assuming that the networks correspond to points on a one-dimensional manifold in a higher dimensional ambient space, we propose an algorithm to consistently predict the response at an unlabeled network. Our model involves a specific multiple random network model, namely the common subspace independent edge model, where the networks share a common invariant subspace, and the heterogeneity amongst the networks is captured by a set of low dimensional matrices. Our algorithm estimates these low dimensional matrices that capture the heterogeneity of the networks, learns the underlying manifold by isomap, and consistently predicts the response at an unlabeled network. We provide theoretical justifications for the use of our algorithm, validated by numerical simulations. Finally, we demonstrate the use of our algorithm on larval Drosophila connectome data.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.