Levels of AI Agents: from Rules to Large Language Models
Authors: Yu Huang
Abstract: AI agents are defined as artificial entities to perceive the environment, make decisions and take actions. Inspired by the 6 levels of autonomous driving by Society of Automotive Engineers, the AI agents are also categorized based on utilities and strongness, as the following levels: L0, no AI, with tools taking into account perception plus actions; L1, using rule-based AI; L2, making rule-based AI replaced by IL/RL-based AI, with additional reasoning & decision making; L3, applying LLM-based AI instead of IL/RL-based AI, additionally setting up memory & reflection; L4, based on L3, facilitating autonomous learning & generalization; L5, based on L4, appending personality of emotion and character and collaborative behavior with multi-agents.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.